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Abstract

We describe a system for the automated certification of safety properties of NASA software.
The system uses Hoare-style program verification technology to generate proof obligations
which are then processed by an automated first-order theorem prover (ATP). We discuss
the unique requirements this application places on the ATPs, focusing on automation, proof
checking, and usability. For full automation, however, the obligations must be aggressively
preprocessed and simplified, and we demonstrate how the individual simplification stages,
which are implemented by rewriting, influence the ability of the ATPs to solve the proof
tasks. Our results are based on 13 certification experiments that lead to 366 top-level safety
obligations and ultimately to more than 25,000 proof tasks which have each been attempted
by Vampire, Spass, e-setheo, and Otter. The proofs found by Otter have been proof-checked
by IVY.
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synthesis, proof checking, verification condition generator, Hoare logic

1 Introduction

Software certification aims to show that the software in question achieves a certain
level of quality, safety, or security. Its result is a certificate, i.e., independently
checkable evidence of the properties claimed. Certification approaches vary widely,
ranging from code reviews to full formal verification, but the highest degree of

1 Email: edenney@email.arc.nasa.gov
2 Email: fisch@email.arc.nasa.gov
3 Email: schumann@email.arc.nasa.gov

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Denney, Fischer, Schumann

confidence is achieved with approaches that are based on formal methods and use
logic and theorem proving to construct the certificates.

We have developed a certification approach which uses Hoare-style techniques
to demonstrate the safety of aerospace software which has been automatically gen-
erated from high-level specifications. Our core idea is to extend the code generator
so that it simultaneously generates code and the detailed annotations, e.g., loop
invariants, that enable a safety proof. A verification condition generator (VCG)
processes the annotated code and produces a set of safety obligations, which are
provable if and only if the code is safe. An automated theorem prover (ATP) then
discharges these obligations and the proofs, which can be verified by an indepen-
dent proof checker, serve as certificates. This approach largely decouples code
generation and certification and is thus more scalable than, e.g., verifying the gen-
erator or generating code and complete safety proofs in parallel. The aim of this
work is to increase trust in the code generator.

In this paper, we evaluate the extent to which the current generation of ATPs is
capable of supporting the formal certification of software. In our view, this covers
three main aspects. First, full automation is crucial since the practicability of our
approach hinges on it. Second, the ability to generate proof objects and to carry out
proof checking is essential to create explicit certificates. Third, there are a range
of traceability issues which have a significant bearing on the ability of an ATP to
create meaningful certificates.

Program certification is a demanding application for ATPs because the number
of proof obligations is potentially very large and program verification is generally a
hard problem domain. However, in our case there are several factors which make a
successful ATP application possible. First, we certify separate aspects of safety and
not full functional correctness. This separation of concerns allows us to show non-
trivial properties like matrix symmetry but results in more tractable obligations.
Second, the extensions of the code generator are specific to the safety properties to
be certified and to the algorithms used in the generated programs. This allows us to
fine-tune the annotations which, in turn, also results in more tractable obligations.
Third, we aggressively simplify the obligations before they are handed over to the
prover, taking advantage of domain-specific knowledge.

In this paper, we evaluate three hypotheses. The first hypothesis is that the
current generation of high-performance ATPs is—in principle—already powerful
enough for practical application in program certification. The second hypothesis
is that ATPs can still not be considered entirely as black boxes but require careful
integration with the application at hand; in particular, the application must carefully
preprocess the proof tasks to make them more tractable. The final hypothesis is
that proof checkers for first-order logic have not yet reached the same level of
maturity as the ATPs themselves, despite the fact that proof checking is, prima
facie, conceptually simpler than proof finding.

We have tested our hypotheses by running five high-performance provers on
seven different versions of the 366 safety obligations resulting from certifying five
different safety policies for four different programs—in total more than 25,000
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proof tasks per prover. In Section 2 we give an overview of the system architecture,
describing the safety policies as well as the generation and preprocessing of the
proof tasks. In Section 3, we outline the experimental set-up used to evaluate the
theorem provers over a range of different preprocessing levels. The detailed results
are given in Section 4; they confirm our first two hypotheses: the provers are gener-
ally able to solve the emerging obligations but only after substantial preprocessing.
However, for almost all programs and all polices, a few hard obligations remain,
and a successful certification (i.e., proof of all obligations) can be achieved only af-
ter even more tuning. Section 5 then discusses the proof checking experiments, and
Section 6 looks at traceability issues. Finally, Section 7 draws some conclusions.

Conceptually, this paper continues the work described in [35,36] but the ac-
tual implementation of the certification system has been completely revised and
substantially extended. We have expanded the range of both algorithms and safety
properties which can be certified; in particular, our approach is now fully integrated
with the AutoFilter system [37] as well as with the AutoBayes system [12] and
the certification process is now completely automated. We have also implemented
a new generic VCG which can be customized for a given safety policy and which
directly processes the internal code representation instead of Modula-2 as in the
previous version. All these improvements and extensions to the underlying frame-
work result in a substantially larger experimental basis than reported before. A
shorter version of this paper appears as [5].

Related Work Our approach is related to proof-carrying code (PCC) [22]. PCC
works on the machine-code level instead of the source-code level (as we do) and
concentrates on very simple safety policies (mainly array-bounds safety) which
leads to comparatively simple proof obligations. Hence, PCC is complementary
to our approach, and a certifying compiler [23] could be used to ensure that the
compilation step does not compromise the demonstrated safety policies. PCC also
spawned an entire cottage industry of proof checkers, e.g., [1]; however, these use
various higher-order logics and so are not applicable for our purposes.

Program verification is a popular application domain for theorem provers; we
mention only a few systems here. KIV [26,28] is an interactive verification en-
vironment which can use different ATPs but relies heavily on term rewriting and
user guidance. Sunrise [15] is a fully automatic system but uses custom-designed
tactics in HOL to discharge the obligations. ESC/Java [10] is an automatic verifica-
tion system but relies on the user to provide additional information on the program,
e.g., loop invariants. Houdini [9] is an automatic annotation assistant which guesses
invariants, but a significant amount of user interaction remains.

2 System Architecture

Our certification tool is built as an extension to the AutoBayes and AutoFilter

program synthesis systems. AutoBayes works in the statistical data analysis do-
main and generates parameter learning programs while AutoFilter generates state
estimation code based on variants of the Kalman filter algorithm. Figure 1 gives
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Fig. 1. Certification system architecture

an overview of the overall system architecture. Both underlying synthesis systems
take as input a high-level problem specification and generate code that implements
the specification. This process is based on the repeated application of schemas.
Schemas are generic algorithms which are instantiated in a problem-specific way
after their applicability conditions have been proven to hold for the given problem
specification. The synthesizers first generate C++-style intermediate code which
is then compiled down into any of the different supported languages and runtime
environments.

For the certification tool, we extended the schemas such that the synthesis sys-
tems generate code that is marked up with annotations relevant to the chosen safety
policy. These annotations encode local safety information which is then propagated
throughout the program. In the next stage, the analysis is carried out by a VCG ap-
plying rules from the safety policy to generate verification conditions which are
then simplified by a rewrite system. Finally, certification is achieved by sending
these simplified verification conditions to an automated theorem prover and check-
ing the resulting proofs.

The individual components are described in some detail in the subsequent sec-
tions. We distinguish trusted and untrusted components, shown in red (dark grey)
and blue (light grey), respectively. In particular, the correctness of our certification
system does not depend on the correctness of the two largest subsystems: the syn-
thesizer, and the theorem prover; instead, we need only trust the safety policy, the
VCG, and the proof checker.

This lets us adopt an approach to certification which we call product-oriented
certification, in contrast to process-oriented approaches, which rely on the quali-
fication (i.e., verification) of the tools being used. A product-oriented approach is
more feasible when using complex tools like theorem provers and hence is more
scalable.

4



Denney, Fischer, Schumann

safety policy safety condition domain theory
array ∀a[i] ∈ c . alo ≤ i ≤ ahi arithmetic
init ∀ read-var x ∈ c . init(x) propositional
in-use ∀ input-var x ∈ c . use(x) propositional
symm ∀matrix-exp m ∈ c . ∀i, j . m[i, j] = m[j, i]matrices

norm ∀ vector v ∈ c . Σ
size(v)
i=1 v[i] = 1 arithmetic, summations

Table 1
Safety conditions for different policies

2.1 Safety Properties and Safety Policies

The certification tool automatically certifies that a program satisfies a given safety
property, i.e., an operational characterization that the program “does not go wrong”.
It uses a corresponding safety policy, i.e., a set of Hoare-style proof rules and aux-
iliary definitions which are specifically designed to show that programs satisfy the
safety property of interest. The distinction between safety properties and policies
is explored in [3].

We further distinguish between language-specific and domain-specific proper-
ties and policies. Language-specific properties can be expressed in the constructs
of the underlying programming language itself (e.g., array accesses), and are sen-
sible for any given program written in the language. Domain-specific properties
typically relate to high-level concepts outside the language (e.g., matrix multipli-
cation), and must thus be expressed in terms of program fragments. Since these
properties are specific to a particular application domain, the corresponding poli-
cies are not applicable to all programs.

We have defined five different safety properties and implemented the corre-
sponding safety policies. Array-bounds safety (array) requires each access to an
array element to be within the specified upper and lower bounds of the array. Vari-
able initialization-before-use (init) ensures that each variable or individual array
element has been assigned a defined value before it is used. Both are typical ex-
amples of language-specific properties. Matrix symmetry (symm) requires certain
two-dimensional arrays to be symmetric. Sensor input usage (in-use) is a variation
of the general init-property which guarantees that each sensor reading passed as an
input to the Kalman filter algorithm is actually used during the computation of the
output estimate. These two examples are specific to the Kalman filter domain. The
final example (norm) ensures that certain one-dimensional arrays represent normal-
ized vectors, i.e., that their contents add up to one; it is specific to the data analysis
domain.

The safety policies can be expressed in terms of two families of definitions.
For each command the policy defines a safety condition and a substitution, which
captures how the command changes the environmental information relevant to the
safety policy. The rules of the safety policy can then be derived systematically from
the standard Hoare rules of the underlying programming language [3].

From our perspective, the safety conditions are the most interesting aspect since
they have the greatest bearing on the form of the proof obligations. Table 1 sum-
marizes the different conditions and the domain theories needed to reason about
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them. Both variable initialization and usage as well as array bounds certification
are logically simple and rely just on propositional and simple arithmetic reason-
ing, respectively, but can require a lot of information to be propagated through-
out the program. The symmetry policy needs reasoning about matrix expressions
expressed as a first-order quantification over all matrix entries. The vector norm
policy is formalized in terms of the summation over entries in a one-dimensional
array, and involves symbolic reasoning over finite sums.

2.2 Generating Proof Obligations

For certification purposes, the synthesis system annotates the code with mark-up
information relevant to the selected safety policy. These annotations are part of the
schema and thus are instantiated in parallel with the code fragments. The annota-
tions contain local information in the form of logical pre- and post-conditions and
loop invariants, which is then propagated through the code. The fully annotated
code is then processed by the VCG, which applies the rules of the safety policy to
the annotated code in order to generate the safety conditions. As usual, the VCG
works backwards through the code. At each line, the safety conditions are gener-
ated and the safety substitutions are applied. The VCG has been designed to be
“correct-by-inspection”, i.e., to be sufficiently simple that it is straightforward to
see that it correctly implements the rules of the logic. Hence, the VCG does not
implement any optimizations, such as structure sharing on verification conditions
(VCs) or even apply any simplifications; in particular, it does not actually apply
the substitutions but maintains explicit formal substitution terms. Consequently,
the generated VCs tend to be large and must be simplified separately; the more
manageable simplified verification conditions (SVCs) which are produced are then
processed by a first order theorem prover. The resulting proofs can be sent to a
proof checker, e.g., Ivy [19].

The structure of a typical safety obligation (after substitution reduction and
simplification) is given in Figure 3. It corresponds to the initialization safety of an
assignment within a nested loop (given in Figure 2, including the generated invari-
ants but omitting the postconditions). Most of the hypotheses consist of annotations
which have been propagated through the code and are, in the best case, merely ir-
relevant to the line at hand but, in the worst case, prevent the prover from finding
a proof. The proof obligation also contains the local loop invariants together with
bounds on for-loops. Finally, the conclusion is generated from the safety condi-
tions for the statement given by the corresponding safety policy. Although safety
obligations with more complex conclusions can arise with the symm and norm poli-
cies, they always have this general form.

2.3 Processing Proof Obligations and Connecting the Prover

The simplified safety obligations are exported as a number of individual proof obli-
gations using TPTP first order logic syntax. A small script then adds the axioms
of the domain theory, before the completed proof task is processed by the theorem
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for(i = 0; i <= 5; i++)
/*{ inv forall x,y:int . 0<=x<=i-1 && 0<=y<=5 =>

tmp2_init[x][y]==init
}*/
for(j = 0; j <= 5; j++)
/*{ inv forall x,y:int . 0<=x<=5 && 0<=y<=5 =>

(x<i => tmp2_init[x][y]==init) &&
(x==i && y<j => tmp2_init[x][y]==init)

}*/
tmp2[i][j] = id[i][j] - tmp1[i][j];

Fig. 2. Generated Code with Annotations

. . . ∀ x, y · 0 ≤ x ≤ 5 ∧ 0 ≤ y ≤ 5 ⇒ sel(id init, x, y) = init

∧ ∀ x, y · 0 ≤ x ≤ 5 ∧ 0 ≤ y ≤ 5 ⇒ sel(tmp1 init, x, y) = init

}

environmental
information

. . . ∀ x, y · 0 ≤ x ≤ i − 1 ∧ 0 ≤ y ≤ 5 ⇒ sel(tmp2 init, x, y) = init

∧ ∀ x, y · 0 ≤ y ≤ 5 ∧ 0 ≤ x ≤ 5 ⇒

(x < i ⇒ sel(tmp2 init, x, y) = init ∧

(y < j ∧ x = i ⇒ sel(tmp2 init, x, y) = init)))



















invariants

. . . 0 ≤ i ≤ 5 ∧ 0 ≤ j ≤ 5
}

index bounds
⇒ (sel(id init, i, j) = init ∧ sel(tmp1 init, i, j) = init)

}

safety condition

Fig. 3. Structure of a safety obligation

prover. Parts of the domain theory are generated dynamically in order to facilitate
reasoning with (small) integers. The domain theory is described in more detail in
Section 3.3.

The connection to a theorem prover is straightforward. For provers that do not
accept the TPTP syntax, the appropriate TPTP2X-converter is used before invoking
the theorem prover. In the experiments, run-time measurement and prover control
(e.g., aborting provers) were performed with the same TPTP tools as in the CASC
competition [32].

3 Experimental Setup

3.1 Program Corpus

As a basis for the certification experiments we generated annotated programs from
four different specifications which were written prior to and independently of the
experiments. The size of the generated programs ranges from 431 to 1157 lines
of commented C-code, including the annotations. Table 3 in Section 4 gives a
more detailed breakdown. The first two examples are AutoFilter specifications.
ds1 is taken from the attitude control system of NASA’s Deep Space One mis-
sion [37]. iss specifies a component in a simulation environment for the Space
Shuttle docking procedure at the International Space Station. In both cases, the
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generated code is based on Kalman filter algorithms, which make extensive use of
matrix operations. The other two examples are AutoBayes specifications which
are part of a more comprehensive analysis of planetary nebula images taken by
the Hubble Space Telescope (see [7,11] for more details). Although these data
analysis applications are not safety-critical, they can run onboard a spacecraft thus
making the software subject to qualification. seg describes an image segmentation
problem for which an iterative (numerical) statistical clustering algorithm is synthe-
sized. Finally, gau fits an image against a two-dimensional Gaussian curve. This
requires a multivariate optimization which is implemented by the Nelder-Mead
simplex method. The code generated for these two examples has a substantially
different structure from the state estimation examples. First, the numerical opti-
mization code contains many deeply nested loops. Also, some of the loops are
convergence loops which have no fixed upper bounds but are executed until a dy-
namically calculated error value gets small enough. In contrast, in the Kalman
filter code, all loops are executed a fixed (i.e., known at synthesis time) number
of times. Second, the numerical optimization code accesses all arrays element by
element and contains no operations on entire matrices (e.g., matrix multiplication).
The example specifications and all generated proof obligations can be found at
http://ase.arc.nasa.gov/autobayes/ijcar.

3.2 Simplification

Proof task simplification is an important and integral part of our overall architec-
ture. However, as observed before [13,8,30], simplifications—even on the purely
propositional level—can have a significant impact on the performance of a theo-
rem prover. In order to evaluate this impact, we used six different rewrite-based
simplifiers to generate multiple versions of the safety obligations. We focus on
rewrite-based simplifications rather than decision procedures because rewriting is
easier to certify: each individual rewrite step T ; S can be traced and checked
independently, e.g., by using an ATP to prove that S ⇒ T holds.

Baseline The baseline for all simplifications is given by the rewrite system T∅

which eliminates the extra-logical constructs (including explicit formal substitu-
tions) which the VCG employs during the construction of the safety obligations.
Our original intention was to axiomatize these constructs in first-order logic and
then (ab-) use the provers for this elimination step, but that turned out to be infea-
sible. The main problem is that the combination with equality reasoning produces
tremendous search spaces.

Propositional Structure The first two proper simplification levels only work on
the propositional structure of the obligations. T∀,⇒ splits the few but large obliga-
tions generated by the VCG into a large number of smaller obligations. It consists
of two rewrite rules ∀x · P ∧ Q ; (∀x · P ) ∧ (∀x · Q) and P ⇒ (Q ∧ R) ;

(P ⇒ Q) ∧ (P ⇒ R) which distribute universal quantification and implication,
respectively, over conjunction. Each of the resulting conjuncts is then treated as an
independent proof task. Tprop simplifies the propositional structure of the obligations
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more aggressively. It uses the rewrite rules

¬ true ; false ¬ false ; true
true ∧ P ; P false ∧ P ; false
true ∨ P ; true false ∨ P ; P

P ⇒ true ; true P ⇒ false ; ¬P

true ⇒ P ; P false ⇒ P ; true
P ⇒ P ; true (P ∧ Q) ⇒ P ; true
P ⇒ (Q ⇒ R) ; (P ∧ Q) ⇒ R ∀x · true ; true

in addition to the two rules in T∀,⇒. The rules have been chosen so that they pre-
serve the overall structure of the obligations as far as possible; in particular, con-
junction and disjunction are not distributed over each other and implications are not
eliminated. Their impact on the clausifier should thus be minimal.

Ground Arithmetic This simplification level additionally handles common ex-
tensions of plain first-order logic, i.e., equality, orders, and arithmetic. The rewrite
system Teval contains rules for the reflexivity of equality and total orders as well as
the irreflexivity of strict (total) orders, although the latter rules are not invoked on
the example obligations. In addition, it normalizes orders into ≤ and > using the
rules

x ≥ y ; y ≤ x ¬x > y ; x ≤ y

x < y ; y > x ¬x ≤ y ; x > y

Since the programs and thus the generated safety obligations contain occurrences
of the different symbols, these eliminations have to be applied explicitly by the
simplifier. However, the choice of the specific symbols is to some extent arbitrary;
choosing for example < instead of > makes no difference. We could even replace
the two rules on the right with a single rule x > y ; ¬x ≤ y and thus eliminate
all but one ordering symbol but instead decided to minimize the term size rather
than the signature size.

Teval also contains rules to evaluate ground integer operations (i.e., addition,
subtraction, and multiplication), equalities, and partial and strict orders. More-
over, it converts addition and subtraction with one small integer argument (i.e.,
n ≤ 5) into Pressburger notation, using rules of the form n + 1 ; succ(n) and
n− 1 ; pred(n). For many safety policies (e.g., init), terms of this form are intro-
duced by relativized bounded quantifiers (e.g., ∀x · 0 ≤ x ≤ n − 1 ⇒ P (x)) and
contain the only occurrences of arithmetic operators. A final group of rules handles
the interaction between succ and pred, as well as with the orders.

succ(pred(x)) ; x pred(succ(x)) ; x

succ(x) ≤ y ; x < y succ(x) > y ; x ≥ y

x ≤ pred(y) ; x < y x > pred(y) ; x ≥ y

Language-Specific Simplification The next level handles constructs which are
specific to the program verification domain, in particular array-expressions and
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conditional expressions, encoding the necessary parts of the language semantics.
The rewrite system Tarray adds rewrite formulations of McCarthy’s array axioms
[18], i.e., sel(upd(a, i, v), j) ; i = j ? v : sel(a, j) for one-dimensional arrays
and similar forms for higher-dimensional arrays. Some safety policies are formu-
lated using arrays of a given dimensionality which are uniformly initialized with a
specific value. These are represented by a constarray-term, for which similar rules
are required, e.g., sel(constarray(v, d), i) ; v.

Nested sel/upd-terms, which result from sequences of individual assignments
to the same array, lead to nested conditionals which in turn lead to an exponential
blow-up during the subsequent language normalization step. Tarray thus also contains
two rules true? x: y ; x and false?x: y ; y to evaluate conditionals.

In order to properly assess the effect of these domain-specific simplifications,
we also experimented with a rewrite system Tarray*, which applies the two sel-rules
in isolation.

Policy-Specific Simplification The most aggressive simplification level Tpolicy uses
a number of rules which are fine-tuned to handle specific situations that frequently
arise with the individual safety policies. The init-policy uses a rule

∀x · 0 ≤ x ≤ n ⇒ (x 6= 0 ∧ . . . ∧ x 6= n ⇒ P ) ; true

which is derived from the finite induction axiom to handle the result of simplifying
nested sel/upd-terms. For in-use, we need a single rule def =use ; false, which
follows from the fact that the two tokens def and use used by the policy are dis-
tinct. For symm, we make use of a lemma about the symmetry of specific matrix
expressions: A + BCBT is already symmetric if (but not only if) the two matrices
A and C are symmetric, regardless of the symmetry of B. The rewrite rule

sel(A + BCBT, i, j) = sel(A + BCBT, j, i)

; sel(A, i, j) = sel(A, j, i) ∧ sel(C, i, j) = sel(C, j, i)

formulates this lemma in an element-wise fashion.
For the norm-policy, the rules become a lot more specialized and complicated.

Two rules are added to handle the inductive nature of finite sums:

∑pred(0)
i=0 x ; 0

P ∧ x =
∑pred(n)

i=0 Q(i) ⇒ x + Q(n) =
∑n

i′=0 Q(i′)

; P ∧ x =
∑pred(n)

i=0 Q(i) ⇒
∑n

i=0 Q(i) =
∑n

i=0 Q(i)

The first rule directly implements the base case of the induction; the second rule,
which implements the step case, is more complicated. It requires alpha-conversion
for the summations as well as higher-order matching for the body expressions, both
of which are, however, under explicit control of this specific rewrite rule and not
the general rewrite engine, and are implemented directly as Prolog predicates. Note
that the right hand side can easily be simplified into true by the application of
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further rules. A similar rule is required in a very specific situation to substitute an
equality into a summation:

P ∧ (∀i · 0 ≤ i ≤ n ⇒ x = sel(f, i)) ⇒
∑n

i=0 sel(f, i) = 1

; P ∧ (∀i · 0 ≤ i ≤ n ⇒ x = sel(f, i)) ⇒
∑n

i=0 x = 1

The above rules capture the central steps of some of the proofs for the norm-policy
and mirror the fact that these are essentially higher-order inferences.

Another set of rewrite rules handles all occurrences of the random number gen-
erator by asserting that the number is within its given range, i.e., l ≤ rand(l, u) ≤
u. Since no other property of random numbers is used, rand is treated as an unin-
terpreted function symbol.

Normalization The final preprocessing step transforms the obligations into pure
first-order logic. It eliminates conditional expressions which occur as top-level
arguments of predicate symbols, using rules of the form P ?T :F = R ; (P ⇒
T = R) ∧ (¬P ⇒ F = R) and similarly for partial and strict orders. A number
of congruence rules move nested occurrences of conditional expressions into the
required positions. Finite sums, which only occur in obligations for the norm-
policy, are represented with a de Bruijn-style variable-free notation.

Control The simplifications are performed by a small but reasonably efficient
rewrite engine implemented in Prolog (cf. Table 3 for runtime information). This
engine does not support full AC-rewriting but flattens and orders the arguments of
AC-operators. The rewrite rules, which are implemented as Prolog clauses, then do
their own list matching but can take the list ordering into account. The rules within
each system are applied exhaustively. However, the two most aggressive simpli-
fication levels Tarray and Tpolicy are followed by a structural “clean-up” phase. This
consists of the language normalization followed by the propositional simplifica-
tions Tprop and the finite induction rule. Similarly, Tarray* is followed by the language
normalization and then by T∀,⇒ to split the obligations. Table 2 shows the number
of rewrite rules for each simplification level, as well as for language normalization
and clean-up.

T∅ T∀,⇒ Tprop Teval Tarray Tarray∗ Tpolicy

simplification N/A 3 17 42 42 2 61
language norm. 8 8 8 8 8 8 8
clean-up N/A N/A N/A N/A 31 3 31

Table 2
Number of rewrite rules used in consecutive phases of different simplifications

3.3 Domain Theory

Each safety obligation is supplied with a first-order domain theory. In our case,
the domain theory consists of a fixed part which contains 44 axioms, and a set
of axioms which is generated dynamically for each proof task. The static axioms
define the usual properties of equality and the order relations, as well as axioms
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for Pressburger arithmetic and for the domain-specific operators (e.g., array ac-
cesses and matrix operations). This part axiomatizes 22 different predicate and
function symbols. The dynamic axioms are added because most theorem provers
cannot calculate with integers, and to avoid the generation of large terms of the
form succ(. . . succ(0) . . .). For all integer literals n,m in the proof task, we gener-
ate the corresponding axioms of the form m > n. For small integers (i.e., n ≤ 5),
we also generate axioms for explicit successor-terms, i.e., n = succn(0) and add a
finite induction schema of the form ∀x·0 ≤ x ≤ n ⇒ (x = 0∨x = 1∨. . .∨x = n).
In our application domain, these axioms are needed for some of the matrix opera-
tions; thus n can be limited to the statically known maximal size of the matrices.
The default set of axioms contains all the formulas required for each of the safety
policies.

3.4 Theorem Provers

For the experiments, we selected several high-performance theorem provers for
untyped first-order formulas with equality. Most of the provers participated in the
CASC-19 [31] prover competition in the FOL category. We used two versions
of e-setheo [21] which were both derived from the CASC version. For e-setheo-
csp03F, Flotter V2.1 [33,34] was used to convert the formulas into a set of clauses
instead of the clausifier provided by the TPTP toolset [32]. e-setheo-new is a recent
development version with several improvements over the original e-setheo-csp03
version. However, neither of the two versions of e-setheo was tuned in any way
for this set of proof tasks. Both versions of Vampire [29] have been taken directly
“out of the box”—they are the versions which were used at CASC-19. Spass 2.1
was obtained from the developer’s website [33]. For comparison purposes, we also
used Otter V3.2 [20], which has been essentially unchanged since 1996.

In the experiments, we used the default parameter settings and none of the spe-
cial features of the provers. The only exception is Otter, where the developer pro-
vided an alternative parameter setting since the defaults proved unsuitable. For
each proof obligation, we limited the run-time to 60 seconds; the CPU time actu-
ally used was measured with the TPTP-tools on a 2.4GHz standard Linux PC with
4GB memory.

4 Empirical Results

4.1 Generating and Simplifying Obligations

Table 3 summarizes the results of generating the different versions of the safety
obligations. For each of the example specifications, it lists the size of the generated
programs (without annotations), the applicable safety policies, the size of the gen-
erated annotations (before propagation), and then, for each simplifier, the elapsed
time T and the number N of generated obligations. The elapsed times include syn-
thesis of the programs as well as generation, simplification, and file output of the
safety obligations; synthesis alone accounts for approximately 90% of the times
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T∅ T∀,⇒ Tprop Teval Tarray Tarray∗ Tpolicy

ex loc P loa T N T N T N T N T N T N T N

ds1 431 array 0 5.5 11 5.3 103 5.4 55 5.5 1 5.5 1 5.6 103 5.5 1
init 87 9.5 21 14.1 339 11.3 150 11.0 142 10.5 74 20.1 543 11.4 74
in-use 61 7.3 19 12.9 453 7.7 59 7.6 57 7.4 21 16.2 682 8.1 21
symm 75 4.8 17 5.7 101 4.7 21 4.9 21 66.7 858 245.6 2969 70.8 865

iss 755 array 0 24.6 1 28.1 582 24.8 114 24.2 4 24.0 4 27.9 582 24.7 4
init 88 39.5 2 65.9 957 42.3 202 41.8 194 39.2 71 82.6 1378 39.7 71
in-use 60 33.4 2 68.1 672 36.7 120 35.7 117 32.6 28 79.1 2409 31.6 1
symm 87 33.0 1 34.9 185 28.1 35 27.9 35 71.0 479 396.8 3434 66.2 480

seg 517 array 0 3.0 29 3.3 85 2.9 8 2.9 3 3.0 3 3.3 85 3.0 1
init 171 6.5 56 12.1 464 7.8 172 7.7 130 7.6 121 12.8 470 7.6 121
norm 195 3.8 54 5.0 155 3.8 41 3.6 30 3.8 32 5.2 157 3.6 14

gau 1039 array 20 21.0 69 24.9 687 21.2 98 21.0 20 20.9 20 24.3 687 21.3 20
init 118 49.8 85 65.5 1417 54.1 395 53.2 324 53.9 316 66.2 1434 54.3 316

Table 3
Generation of safety obligations

listed under the array safety policy. In general, the times for generating and simpli-
fying the obligations are moderate compared to both generating the programs and
discharging the obligations. All times are CPU times and have been measured in
seconds using the Unix time command.

Almost all of the generated obligations are valid, i.e., the generated programs
are safe. The only exception is the in-use-policy which produces one invalid obli-
gation for each of the ds1 and iss examples. This is a consequence of the original
specifications which do not use all elements of the initial state vectors. The invalid-
ity is confined to a single conjunct in one of the original obligations, and since none
of the rewrite systems contains a distributive law, the number of invalid obligations
does not change with simplification.

The first four simplification levels show the expected results. The baseline T∅

yields relatively few but large obligations which are then split up by T∀,⇒ into a
much larger (on average more than an order of magnitude) number of smaller obli-
gations. The next two levels then eliminate a large fraction of the obligations. Here,
the propositional simplifier Tprop alone already discharges between 50% and 90% of
the obligations while the additional effect of evaluating ground arithmetic (Teval) is
much smaller and generally well below 25%. The only significant difference oc-
curs for the array-policy where more than 80% (and in the case of ds1 all) of
the remaining obligations are reduced to true. This is a consequence of the large
number of obligations which have the form ¬n ≤ n ⇒ P for an integer constant
n representing the (lower or upper) bound of an array. The effect of the domain-
specific simplifications is at first glance less clear. Using the array-rules (Tarray*) only
generally leads to an increase over T∀,⇒ in the number of obligations; this even sur-
passes an order of magnitude for the symm-policy. However, in combination with
the other simplifications (Tarray), most of these obligations can be discharged again,
and we generally end up with fewer obligations than before; again, the symm-policy
is the only exception. The effect of the final policy-specific simplifications is, as
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should be expected, highly dependent on the policy. For in-use and norm a further
reduction is achieved, while the rules for init and symm only reduce the size of the
obligations.

4.2 Running the Theorem Provers

Table 4 summarizes the results obtained from running the theorem provers on
all proof obligations (except for the invalid obligations from the in-use-policy),
grouped by the different simplification levels. Each line in the table corresponds to
the proof tasks originating from a specific safety policy (array, init, in-use, symm,
and norm). Then, for each prover, the percentage of solved proof obligations and
the total CPU time are given. Note that TATP also includes the actual CPU times for
failed proof attempts.

For the fully simplified version (Tpolicy), all provers are able to find proofs for
all tasks originating from at least one safety policy; e-setheo-csp03F can even dis-
charge all the emerging safety obligations This result is central for our application
since it shows that current ATPs can in fact be applied to certify the safety of syn-
thesized code, confirming our first hypothesis.

For the unsimplified safety obligations, however, the picture is quite different.
Here, the provers can only solve a relatively small fraction of the tasks and leave
an unacceptably large number of obligations to the user. The only exception is the
array-policy, which produces by far the simplest safety obligations. This confirms
our second hypothesis: aggressive preprocessing is absolutely necessary to yield
reasonable results.

Let us now look more closely at the different simplification stages. Breaking
the large original formulas into a large number of smaller but independent proof
tasks (T∀,⇒) boosts the relative performance considerably. However, due to the
large absolute number of tasks, the absolute number of failed tasks also increases.
With each additional simplification step, the percentage of solved proof obligations
increases further. Interestingly, however, T∀,⇒ and Tarray seem to have the biggest
impact on performance. The reason seems to be that equality reasoning on deeply
nested terms and formula structures can then be avoided, albeit at the cost of the
substantial increase in the number of proof tasks. The results with the simplification
strategy Tarray∗ , which only contains the language-specific rules, also illustrates this
behavior. The norm-policy clearly produces the most difficult safety obligations,
requiring essentially inductive and higher-order reasoning. Here, all simplification
steps are required to make the obligations go through the first-order ATPs.

The results in Table 4 also indicate there is no single best theorem prover. Even
variants of the “same” prover can differ widely in their results. For some proof obli-
gations, the choice of the clausification module makes a big difference. The TPTP-
converter implements a straightforward algorithm similar to the one described in
[17]. Flotter uses a highly elaborate conversion algorithm which performs many
simplifications and avoids exponential increase in the number of generated clauses.
This effect is most visible on the unsimplified obligations (e.g., T∅ under init),
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e-setheo03F e-setheo-new SPASS Vampire6.0 Vampire5.0 Otter
P N % TATP % TATP % TATP % TATP % TATP % TATP

T∅
ar 110 96.4 192.4 94.5 284.9 96.4 73.4 95.5 178.1 95.5 102.1 83.6 870.3
in 164 76.8 3000.8 13.1 1759.8 75.0 2898.3 8.5 9224.9 8.5 8251.0 6.6 6534.7
iu 19 57.9 610.8 44.4 612.2 68.4 512.8 57.9 773.1 47.4 645.5 35.7 16.0
sy 18 50.0 387.7 8.3 266.1 38.9 555.3 16.7 744.9 16.7 723.6 16.7 847.9
no 54 51.9 1282.4 51.9 1341.0 51.9 1224.2 50.0 1316.5 48.1 1327.1 31.5 1537.7

T∀,⇒

ar 1457 99.0 903.4 94.2 5925.0 99.8 217.0 99.9 240.5 99.8 152.4 99.5 714.5
in 3177 88.4 3969.4 91.7 20784.8 97.4 8732.2 95.0 14482.2 93.5 14203.4 92.0 19310.5
iu 1123 59.3 819.1 96.4 4100.3 99.1 1733.5 95.3 4183.7 94.3 4206.8 96.6 3014.2
sy 286 93.4 1785.9 90.6 2341.0 88.5 3638.7 90.2 3315.8 91.3 1789.2 80.8 2160.1
no 155 85.8 1422.1 73.5 2552.5 84.5 1572.0 87.7 1359.9 87.1 1276.0 76.1 2051.6

Tprop

ar 275 99.3 278.2 76.4 4080.8 99.3 157.5 99.3 187.5 99.3 132.6 97.1 621.4
in 919 94.7 4239.4 73.0 17472.2 92.8 5469.7 84.9 10598.0 83.2 10546.8 78.8 13461.6
iu 177 86.4 1854.0 77.4 2768.2 94.9 1008.3 70.1 3806.2 65.0 3960.6 78.5 2729.2
sy 56 66.1 1476.2 51.8 1944.4 48.2 1911.3 58.9 1596.7 58.9 1424.8 19.6 2002.2
no 41 46.3 1361.2 41.5 1484.6 41.5 1478.2 53.7 1286.7 51.2 1275.3 9.8 2036.2

Teval

ar 28 100.0 16.2 100.0 19.7 100.0 10.4 100.0 12.7 100.0 1.7 100.0 20.7
in 790 94.6 3944.2 94.1 8288.0 93.3 4380.1 82.5 10239.0 82.0 9040.2 85.7 7983.6
iu 172 86.0 1852.2 83.1 2305.2 94.8 1023.1 69.8 3718.1 67.4 3561.1 64.0 3715.3
sy 56 66.1 1451.1 66.1 1500.4 51.8 1716.0 62.5 1455.5 58.9 1389.8 26.8 1828.2
no 30 53.3 859.4 13.3 1575.8 50.0 940.5 66.7 736.7 53.3 858.0 50.0 1007.7

Tarray

ar 28 100.0 15.4 100.0 19.8 100.0 10.4 100.0 12.7 100.0 1.7 100.0 20.2
in 582 100.0 527.6 100.0 823.9 99.7 875.8 100.0 1401.3 99.0 785.1 95.7 2468.7
iu 47 100.0 323.9 100.0 343.2 100.0 171.3 100.0 262.6 87.2 525.2 85.1 613.7
sy 1337 100.0 1104.3 99.9 1629.3 99.4 746.4 99.1 963.9 99.0 922.7 98.2 872.9
no 32 59.4 678.4 18.8 1583.1 59.4 709.7 62.5 791.7 50.0 858.6 59.4 896.2

Tarray∗

ar 1457 99.9 916.4 94.2 5918.0 99.9 210.8 99.9 240.6 99.9 153.1 99.5 711.9
in 3825 99.7 3412.3 96.3 13536.1 99.5 4574.9 99.8 4952.1 98.4 6000.1 95.5 13680.4
iu 3089 99.8 2438.4 99.4 5139.0 99.8 889.2 99.8 793.5 99.6 925.9 99.5 1427.8
sy 6403 99.9 5317.4 99.7 11787.7 99.7 3385.1 99.6 3277.3 99.6 1807.0 83.5 1682.8
no 157 86.0 1306.8 72.6 2670.8 86.0 1351.3 86.6 1449.9 86.0 1276.2 76.4 2078.3

Tpolicy

ar 26 100.0 15.0 100.0 17.7 100.0 9.9 100.0 12.0 100.0 1.6 100.0 19.7
in 582 100.0 529.2 100.0 827.9 99.5 875.2 100.0 1418.9 99.0 782.5 95.7 2456.7
iu 20 100.0 281.7 100.0 329.7 100.0 170.7 100.0 262.6 70.0 524.8 65.0 601.1
sy 1345 100.0 1104.6 99.9 1640.5 99.4 760.0 99.1 1048.8 99.0 926.9 99.3 501.1
no 14 100.0 9.0 57.1 375.8 100.0 26.2 100.0 108.0 71.4 241.8 100.0 69.7

Table 4
Results and times for array (ar), init (in), in-use (iu), symm (sy), and norm (no) policy.

where Spass and e-setheo-csp03F—which both use the Flotter clausifier—perform
substantially better than the other provers.

Since our proof tasks are generated directly by a real application and are not
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T∅ (N=365) T∀,⇒(N=6198) Tprop (N=1468) Teval (N=1076) Tarray (N=2026) Tpolicy(N=1987)

Fig. 4. Distribution of easy (Tproof < 1s, white), medium (Tproof < 10s, light grey), difficult
(Tproof < 60s, dark grey) proofs, and failing proof tasks (black) for the different simplifica-
tion stages (prover: e-setheo-csp03F). N is the total number of proof tasks at each stage.

hand-picked for certain properties, many of them are (almost) trivial—even in the
unsimplified case. Figure 4 shows the resources required for the proof tasks as a
series of pie charts for the different simplification stages. All numbers are obtained
with e-setheo-csp03F; the figures for the other provers look similar. Overall, the
charts reflect the expected behavior: with additional preprocessing and simplifi-
cation of the proof obligations, the number of easy proofs increases substantially
and the number of failing proof tasks decreases sharply from approximately 16%
to zero. The relative decrease of easy proofs from T∀,⇒ to Tprop and Teval is a conse-
quence of the large number of easy proof tasks already discharged by the respective
simplifications.

4.3 Difficult Proof Tasks

Since all proof tasks are generated in a uniform manner through the application
of a safety policy by the VCG, it is obvious that many of the difficult proof tasks
share some structural similarities. We have identified three classes of hard exam-
ples; these classes are directly addressed by the rewrite rules of the policy-specific
simplifications.

Most safety obligations generated by the VCG are of the form A ⇒ B1∧. . .∧Bn

where the Bi are variable disjoint. These obligations can be split up into n smaller
proof obligations of the form A ⇒ Bi and most theorem provers can then handle
these smaller independent obligations much more easily than the large original.
The second class contains formulas of the form symm(r) ⇒ symm(diag-updates(r)).
Here, r is a matrix variable which is updated along its diagonal, and we need to
show that r remains symmetric after the updates. For a 2x2 matrix and two updates
(i.e., r00 = x and r11 = y), we obtain the following simplified version of an actual
proof task:

∀i, j · (0 ≤ i, j ≤ 1 ⇒ sel(r, i, j) = sel(r, j, i)) ⇒
(∀k, l · (0 ≤ k, l ≤ 1 ⇒

sel(upd(upd(r, 1, 1, y), 0, 0, x), k, l) = sel(upd(upd(r, 1, 1, y), 0, 0, x), l, k))).

This already pushes the provers to their limits—e-setheo cannot prove this while
Spass succeeds here but fails if the dimensions are increased to 3x3, or if three
updates are made. In our examples, matrix dimensions up to 6x6 with 36 updates
occur, yielding large proof obligations of this specific form which are not provable
by current ATPs without further preprocessing.
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Another class of seemingly trivial but hard examples, which frequently shows
up in the init-policy, results from the expansion of deeply nested sel/upd-terms.
These problems have the form

∀i, j ·0 ≤ i ≤ n∧0 ≤ j ≤ n ⇒ (¬(i = 0∧j = 0)∧. . .∧¬(i = n∧j = n) ⇒ false)

and soon become intractable for the clausifier, even for small n (n = 2 or n = 3),
although the proof would be easy after a successful clausification.

4.4 Policy-Specific Domain Theories

The domain theory described in Section 3.3 and used in the experiments summa-
rized in Table 4 contains all axioms required to prove any of the obligations; in
particular, it also contains axioms which are specific to the symbols used only in
one policy and which should thus not be required for any obligation from the other
policies. However, experience shows that the ATPs have problems detecting such
redundant axioms [8,27,30].

e-setheo03F Vampire 5.0
reduced theory full theory reduced theory full theory

simp. policy % Tproof Tmean % Tproof Tmean % Tproof Tmean % Tproof Tmean

T∅ array 96.4 61.5 0.56 96.4 131.2 1.19 96.6 0.4 0.01 95.5 3.1 0.03
init 86.6 868.8 5.30 76.8 928.9 5.66 4.5 0.0 0.00 8.5 22.0 0.13
in-use 57.9 32.0 1.68 57.9 62.4 3.28 47.4 7.4 0.4 47.4 7.5 0.40

T∀,⇒ array 99.9 633.2 0.43 99.0 782.1 0.54 99.9 22.6 0.02 99.8 31.9 0.02
init 98.6 7259.1 2.28 88.4 2155.1 0.68 93.5 1730.5 0.54 93.5 1845.2 0.58
in-use 98.0 686.5 0.61 59.3 456.6 0.41 94.4 216.0 0.19 94.3 228.3 0.20

Tprop array 99.3 125.6 0.46 99.3 156.8 0.57 99.3 8.4 0.03 99.3 12.1 0.04
init 95.2 5467.7 5.95 94.7 1274.4 1.39 83.0 1107.5 1.21 83.2 1258.5 1.37
in-use 87.0 179.0 1.01 86.4 283.4 1.60 65.5 100.0 0.57 65.0 101.6 0.57

Teval array 100.0 12.7 0.45 100.0 16.2 0.58 100.0 1.5 0.05 100.0 1.7 0.06
init 94.7 5240.3 6.63 94.6 1342.1 1.70 82.3 491.4 0.62 82.0 478.3 0.61
in-use 86.6 244.8 1.42 86.0 281.7 1.64 66.9 93.0 0.54 67.4 123.4 0.72

Tarray array 100.0 12.4 0.44 100.0 15.4 0.55 100.0 1.4 0.05 100.0 1.7 0.06
init 100.0 354.5 0.61 100.0 527.6 0.91 99.3 443.1 0.76 99.0 423.3 0.73
in-use 100.0 31.4 0.67 100.0 203.4 4.33 87.2 39.5 0.84 87.2 42.9 0.91

Tarray∗ array 99.9 616.3 0.42 99.9 795.4 0.55 99.9 23.0 0.02 99.9 32.5 0.02
init 99.8 2353.4 0.62 99.7 2807.3 0.73 98.2 1923.4 0.50 98.4 2200.5 0.58
in-use 99.8 1485.6 0.48 99.8 2015.9 0.65 99.6 65.7 0.02 99.6 81.9 0.03

Tpolicy array 100.0 11.7 0.45 100.0 15.0 0.58 100.0 1.4 0.05 100.0 1.6 0.06
init 100.0 363.3 0.62 100.0 529.2 0.91 99.3 443.2 0.76 99.0 420.7 0.72
in-use 100.0 19.4 0.97 100.0 187.9 9.39 70.0 39.0 1.95 70.0 42.5 2.13

Table 5
Proof results and times—policy-specific domain theories

In order to evaluate the effect of redundant axioms in our case, we used a re-
duced domain theory for the array, init, and in-use safety polices and then re-ran
e-setheo-csp03F and Vampire5.0. The reduced domain theory uses the same dy-
namic axiom generator as the full theory but omits seven axioms that specify the
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behavior of matrix operations (i.e., addition, subtraction, multiplication, transposi-
tion, and inversion) which do not occur in the obligations resulting from the above
policies. The reduced set thus contains 37 axioms and 17 symbols.

Table 5 summarizes this experiment and gives the results and times for both
the reduced and the original full domain theory. Note that Tproof only includes the
CPU times for successful proof attempts; Tmean is the average CPU time for these
cases. There is no uniform trend, however—depending on the ATP, the applied
simplifications, and the safety policy, either more or less tasks are proven while the
proofs can become faster or slower. This non-uniform behavior is likely to be a
consequence of the internal architecture of the provers. Both e-setheo and Vampire
implement multiple search strategies and then derive a schedule from the proof
task. However, e-setheo’s scheduling algorithm seems to be more sensitive to the
changes than Vampire’s. e-setheo never fails to prove proof tasks by switching to
the reduced domain theory and sometimes finds a substantial number of additional
proofs, in particular for unsimplified or almost unsimplified tasks. The average
proof times are usually slightly better but they can vary widely—up to one order of
magnitude in both directions (e.g., init with Tprop and in-use with Tpolicy). In contrast,
the variation in Vampire’s results and proof times is a lot smaller and appears to be
statistically insignificant.

5 Proof Checking

For certification purposes, explicit evidence must be provided that none of the in-
dividual tool components can yield incorrect results. The VCG is designed so that
it can be manually inspected for correctness and, similarly, the rewrite rules used
for simplification can be inspected and even individually proven correct. How-
ever, the state-of-the-art high performance ATPs in our system use complicated
calculi, elaborate data structures, and optimized implementations to increase their
deductive power and obtain fast results. This makes a formal verification of their
correctness impossible in practice. Although they have been extensively validated
by the theorem proving community (using the TPTP benchmark library), the ATPs
remain the weakest link in the certification chain.

As an alternative to formally verifying the ATPs, they can be extended to gener-
ate sufficiently detailed proofs which can then be independently checked by a small
and thus verifiable algorithm. This is the same approach we have taken in extend-
ing the synthesis system to generate annotated code, rather than directly verifying
the synthesizer. However, although this idea is very simple in theory, there are cur-
rently (as of 2004) almost no proof checkers for high-performance ATPs. This has
a number of practical reasons:

• Many ATPs simply do not generate the required detailed proofs, mainly due to
implementation effort and run-time requirements.

• On-going changes in the ATP require frequent updates and re-verification of the
proof checker.
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• Most ATPs contain a large number of high-level inference rules (such as split-
ting) which cannot easily be expanded into sequences of low-level inferences,
making the proof checker more complicated and thus hard to verify.

• Almost all ATPs work on problems in CNF, so the proof checking can only be
done on that level, and not on the FOL level. Since clausification is often a large
part of a proof, this reduces the confidence that proof checking can bring.

The notable exception is the IVY system [19] that we used in our experiments.
IVY combines a clausifier and the Otter theorem prover with a proof checker. Be-
cause IVY is implemented within the ACL2 logic [16], both the clausifier and the
proof checker have been verified. IVY thus provides the same functionality as a
verified prover for first-order logic, but achieves relatively good performance by
using Otter to find the proofs. However, the formal verification of the IVY clausi-
fier and proof checker are based up finite domains [19] but since the implementation
of IVY does not actually rely on the finiteness, the system can be used for arbitrary
proof tasks.

Another limitation of IVY is shared by all existing clausification algorithms.
Clausifiers usually take a first-order formula apart and reorganize the pieces us-
ing non-logical graph-based techniques. Thus, establishing traceability between
the clauses (or literals) and the positions they had in the original formula would
require substantial effort and has not yet been attempted in practical implementa-
tions. While this restriction makes it impossible to translate the clausal proof back
into a first-order representation, it also has a negative influence on the prover’s be-
havior. Many ATPs can be sped up considerably if it is known which parts of the
formula are axioms and which belong to the conjecture. This distinction allows
the prover to apply goal-oriented rules. Our application naturally provides this in-
formation, but this is ignored by IVY. Thus, the Otter prover used within IVY can
only use Otter’s auto-mode which is rather weak for our proof obligations. Experi-
ments also revealed that IVY has problems in handling the full axiom set. With the
policy-specific domain theory of Section 4.4, we obtained the following results for
the fully simplified tasks: 100% in 34.8s for the array property, 89.2% in 4929.2s
for init, and 65.0% in 657.5s for in-use.

6 Traceability

The successful application of an automated theorem prover to verification and, in
particular, to certification problems such as we have described here, places more re-
quirements on an ATP than just raw deductive power. Since the aim of certification
is to provide explicit evidence that software meets a specified standard of safety, it
is important that domain experts can assess the evidence for successful checks of
the safety properties and any places where it is violated.

Safety checks are typically carried out during code reviews [24], where review-
ers look in detail at each line of the code and check the individual safety proper-
ties statement by statement. The successful outcome of a code review, therefore,
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consists of the code, where each statement is labelled with either “complies with
property P ”, or with information about the violation. This requires two things: (i)
tracing information which links the safety obligations (or their proofs) to specific
lines of code in the program being certified, and (ii) a summary which relates this
detailed information back to the specification and the safety policy, while drawing
attention to specific areas of concern.

Existing techniques for addressing the tracing problem [14], however, need to
be extended for our purposes. The required information about code locations needs
to be threaded through all stages of our certification architecture (cf. Figure 1).
Only then can the tracing information be obtained and displayed in the appropriate
way. Even if we just want to know if a certain line in the code fulfills a safety
property, the location information still needs to be threaded through the VCG and
the simplifier.

To get more detailed information, however, the tracing has to be threaded through
the ATP and into the proof it generates. For example, the analysis needs to reveal
which other lines of code are actually required to satisfy a property. For variable
initialization safety this can mean computing on which line the variable that is ac-
cessed in the current statement was initialized. The extraction of this information
requires knowledge of which parts of the formula contributed to the proof, as well
as their location information. This problem is aggravated by the fact that most
theorem provers work on clausal normal form, which usually looses the important
location information.

In general, useful information extracted from an ATP can be used for purposes
of auto-generating documentation. In [6], we describe a safety documentation tool,
which generates a natural language description explaining the safety of a program,
by converting the VCs into text. This could be extended by carrying out some
symbolic evaluation from the simplifier as an intermediate step to using the full
proofs.

7 Conclusions

We have described a system for the automated certification of safety properties of
NASA state estimation and data analysis software. The system uses a generic VCG
together with explicit safety policies to generate policy-specific safety obligations
which are then automatically processed by a first-order ATP. We have evaluated
several state-of-the-art ATPs on more than 25,000 proof tasks generated by our
system. With “out-of-the-box” provers, only about two-thirds of the tasks could be
proven but after aggressive simplification, most of the provers could solve almost
all emerging tasks. In order to see the effects of simplification more clearly, we
experimented with several preprocessing stages. Figure 5 shows (on the left) the
overall results for the different stages and provers.

However, the percentage of solved proof tasks is a very ATP-centric metric; it
is also somewhat artificial because it can easily be boosted by splitting the orig-
inal obligations into a larger number of small proof tasks (cf. the results for T∅
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Fig. 5. Comparison of proof results and certification results

and T∀,⇒). An empirically more meaningful metric for the success of this ATP-
application is the percentage of solved certification tasks, i.e., the relative number
of cases in which the ATP solves all safety obligations resulting from the applica-
tion of a safety policy to an individual program. Figure 5 shows this metric (on the
right) for the different simplification stages and provers. This change in perspec-
tive leads to a dramatic change in the interpretation of the same results. The two
major differences are: (i) the numbers go down and (ii) the variation between the
provers becomes larger. Both differences result from a few hard proof tasks which
are distributed evenly over the different certification tasks. Consequently, empirical
success is a lot harder to come by if it is defined in terms of the application rather
than in terms of the TPTP corpus. However, as our experiments show it is clearly
not impossible.

It is well-known that, in contrast to traditional mathematics, software verifica-
tion hinges on large numbers of mathematically shallow (in terms of the concepts
involved) but structurally complex proof tasks, yet current provers are not well
suited to this. Since the propositional structure of a formula is of great importance,
we believe that clausification algorithms should integrate more simplification and
split goal tasks into independent subtasks. Likewise, certain application-specific
constructs (e.g., sel/upd) can easily lead to proof tasks which cannot be handled
by current ATPs. The reason is that simple manipulations on deep terms, when
combined with equational reasoning, can result in a huge search space.

Our certification approach relies on proof checking to ensure that the proofs
are correct. However, the ATPs fare less well when assessed in these terms and
more research efforts should go into the development of proof checkers for high-
performance provers. Moreover, it is very difficult to get useful information from
the ATPs which can then be used as a basis for documentation. Since we believe
that software certification is potentially one of the main application areas for auto-
mated theorem proving, this is clearly another area in need of further work.

With our approach to certification of auto-generated code, we are able to au-
tomatically produce safety certificates for code of considerable length and struc-
tural complexity. By combining rewriting with state-of-the-art automated theorem
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proving, we obtain a safety certification tool which compares favorably with tools
based on static analysis (see [4] for a comparison). Our current efforts focus on
extending the certification system in a number of areas. One aim is to develop a
certificate management system, along the lines of the Programatica project [25]. In
another thread of future work we will experiment with other reasoning systems and
decision-based tools (such as PVS, Vampire, and Simplify) to process our verifica-
tion conditions. We also plan to combine our work on certification with automated
safety and design document generation [6] tools that we are developing. Finally,
we continue to integrate additional safety properties.
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